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Abstract

A numerical method is developed for solving the 3D, unsteady, incompressible Navier–Stokes equations in Cartesian

domains containing immersed boundaries of arbitrary geometrical complexity moving with prescribed kinematics. The

governing equations are discretized on a hybrid staggered/non-staggered grid layout using second-order accurate finite-

difference formulas. The discrete equations are integrated in time via a second-order accurate dual-time-stepping, arti-

ficial compressibility iteration scheme. Unstructured, triangular meshes are employed to discretize complex immersed

boundaries. The nodes of the surface mesh constitute a set of Lagrangian control points used to track the motion of the

flexible body. At every instant in time, the influence of the body on the flow is accounted for by applying boundary

conditions at Cartesian grid nodes located in the exterior but in the immediate vicinity of the body by reconstructing

the solution along the local normal to the body surface. Grid convergence tests are carried out for the flow induced by

an oscillating sphere in a cubic cavity, which show that the method is second-order accurate. The method is validated by

applying it to calculate flow in a Cartesian domain containing a rigid sphere rotating at constant angular velocity as well

as flow induced by a flapping wing. The ability of the method to simulate flows in domains with arbitrarily complex

moving bodies is demonstrated by applying to simulate flow past an undulating fish-like body and flow past an

anatomically realistic planktonic copepod performing an escape-like maneuver.
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1. Introduction

Many flows of technological and/or biological significance take place in multi-connected domains with

complex, flexible, immersed boundaries. Typical examples range from flows in natural rivers with flexible

vegetation, to flows in the human cardiovascular system, and flows past swimming and flying animals and
insects. Simulation of the fluid/structure interaction that dominates the dynamics of these flows poses a for-

midable challenge to even the most advanced numerical techniques, and is currently at the forefront of

ongoing work in computational fluid dynamics. In recent years, ‘‘non-boundary conforming’’ numerical

methods are attracting attention in simulations of such problems due to their increased versatility as com-

pared to boundary-fitted techniques based on the so-called arbitrary Lagrangian Eulerian (ALE) approach

[1–4]. ALE methods are better suited for carrying out high Reynolds number simulations but, due to the

need for the mesh to conform to the body at all times, they are inherently limited to problems with mod-

erate body deformations. This limitation can be mitigated by solving the governing equations on a fixed
Cartesian grid and accounting for the effect of a stationary or moving body, which no longer coincides with

a grid surface, via proper treatment of the solution variables at grid cells in the vicinity of the boundary.

This feature eliminates the tedious task of grid adaptation required in classical ‘‘boundary conforming’’

methods, allowing the simulation of flows with complex boundaries undergoing large deformations in a

relatively straightforward manner.

A major challenge in the implementation of any non-boundary conforming methodology is the establish-

ment of the relation between the Lagrangian coordinates of the body and the underlying Eulerian grid and

the imposition of boundary conditions. In fact, the overall accuracy and applicability of such methods to
complex three-dimensional flows depends critically on three important issues: (1) description of the topol-

ogy of complex moving boundaries; (2) identification of the relation between the surface of the body and

the underlying grid; (3) enforcement of proper boundary conditions. The first two issues, which are collec-

tively referred to as the ‘‘interface tracking’’ problem, can be addressed either on an Eulerian or a Lagrang-

ian frame of reference, leading to purely Eulerian or Lagrangian–Eulerian formulations, respectively. A

review of different ‘‘interface tracking’’ methodologies can be found in [5] and some characteristic examples

are given in [6–8]. In terms of the imposition of boundary conditions (item 3), non-boundary conforming

methods can be classified in two major categories: Cartesian methods and Immersed Boundary methods.
In Cartesian (or cut-cell) methods a solid boundary is tracked as a sharp interface and the grid cells at the

body interface are modified according to their intersections with the underlying Cartesian grid. Using

proper interpolation strategies the flow variables on the resulting modified (irregular) cells can be computed

according to the boundary conditions on the body. Cartesian methods allow a clear distinction between the

solid and the fluid, by practically generating a boundary-fitted grid around the body, and are applicable to

problems involving arbitrary deformations of a body (or an ensemble of bodies) relative to the fixed Eule-

rian grid. The first predecessor of modern-day Cartesian methods was proposed in the early work of Noh

[9] and dubbed as coupled Eulerian–Lagrangian method (CEL). Recent successful applications to two-
dimensional inviscid and viscous flow problems can be found in [10–13]. A difficulty encountered in the

implementation of Cartesian methods arises from the large number of possible intersections between the

fixed grid and the surface of the deforming boundary, leading to the formation of various irregular ‘‘inter-

face-cells’’. Implementing the boundary conditions in such cells necessitates a large number of ‘‘special

treatments’’, which could result in complex coding logistics. Furthermore, in complex configurations the

unavoidable generation of irregularly shaped cells with very small volume can adversely impact the conser-

vation and stability properties of the solver. To address this problem cell merging techniques have been pro-

posed by Quirk [12] and Ye et al. [14]. The later formulation [14] was also extended to treat moving
boundaries with good results for a variety of two-dimensional problems [15]. Cut-cell formulations appli-

cable to three-dimensional problems with stationary immersed boundaries have been proposed in [16–18]

and [19].
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In the so-called Immersed Boundary methods the governing equations are also discretized on a fixed

Cartesian grid. The effect of a stationary or moving boundary, however, is accounted for by introducing

an external force field in the equations of motion, which is designed to ensure that the fluid satisfies the

no-slip conditions on solid boundaries. The method was first introduced by Peskin in the early 70s,

although some earlier work by Vieceli [21,22] in the extension of the Marker and Cell method to cases with
arbitrarily shaped and moving boundaries also falls into this category of methods. Peskin and McQueen

[23–26] applied the Immersed Boundary methodology to study blood flow in the human heart. In the above

computations the vascular boundary was modelled as a set of elements linked by springs and a Lagrangian

coordinate system was attached to track their location in space. The tracking information was then used to

compute the spatial distribution of the external force field that was explicitly introduced in the governing

equations at the fixed Eulerian grid nodes. To avoid numerical instabilities due to the stiffness of the prob-

lem, a delta function was used to distribute the forcing over 3�4 grid nodes in the vicinity of the boundary.

Goldstein et al. [27] introduced an alternative formulation to treat stationary solid boundaries coupled with
a highly accurate spectral method. They used a ‘‘feedback-forcing’’ approach which asymptotically enforces

the desired boundary conditions on a solid boundary. Due to the global character of the spectral method, to

avoid spurious oscillations near the immersed boundaries forcing was also spread over a few points using a

function similar to the delta-function employed by Peskin [20]. Three-dimensional computations of turbu-

lent flow in plane channels [27], and ridded channels [28] were in good agreement with reference data. More

recently, Cortez and Minion [29] proposed a higher-order immerse boundary scheme using the smoothed

blob projection to compute the force field and demonstrated better accuracy than the original immersed

boundary method. Their method, however, also employs a discrete delta function and results in the smear-
ing of the interface.

The spreading of the forcing function over several grid nodes is an inherent feature of immersed bound-

ary formulations. This feature increases substantially the spatial resolution requirements and appears to be

a major obstacle in the extension of the method to realistic Reynolds number technological and biological

applications. A variant of the classical immersed boundary method that overcomes this limitation was pro-

posed by LeVeque and Li [30,31] and was dubbed the immersed interface method (IIM). This method was

initially applied to solve 2D elliptic equations [30] and Stokes flow problems with flexible boundaries [31]

and more recently it was extended to solve the 2D, incompressible Navier–Stokes equations [32]. The IIM
modifies the governing equations at grid nodes only in the immediate vicinity of the interface by adding

forcing functions constructed to enforce a set of appropriate jump conditions at the interface. The method

maintains sharp-interfaces between different phases and is second-order accurate.

A different approach that does not require the explicit addition of discrete forces to the governing equa-

tions was recently proposed by Mohd-Yusof [33] and Fadlun et al. [34]. Similarly to Cartesian methods and

the IIM, this approach treats the solid boundary as a sharp interface. Rather than modifying the Eulerian

grid cells in the vicinity of the boundary and applying boundary conditions exactly on the boundary, how-

ever, this method applies boundary conditions at the grid nodes closest to the solid boundary. The specific
values of various flow variables at such near-boundary nodes are calculated by interpolating linearly along

an appropriate grid line between the nearest interior node, where flow variables are available from the solu-

tion of the governing equations, and the point where the grid line intersects the solid boundary, where phys-

ical boundary conditions are known. This approach can be thought of as accounting for the presence of a

solid boundary by introducing, albeit implicitly, a set of discrete body-forces at the grid nodes nearest to the

boundary. In that sense, this method is conceptually related to the IIM but since it does not require the

explicit derivation of jump conditions and the addition of body forces it has been more appropriately clas-

sified as a hybrid Cartesian/immersed boundary (HCIB) approach [34]. The HCIB approach is very prom-
ising for 3D flows and has been successfully applied to a variety of problems including large-eddy

simulation (LES) of turbulent flow inside a motored IC piston/cylinder assembly [34,35] and the direct

numerical simulation (DNS) of the flow in an impeller stirred tank [36].
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A critical issue for the successful implementation of the HCIB approach in three-dimensional flows, lies

in the choice of the solution reconstruction scheme near the immersed interface. In Fadlun et al. [34], a sim-

ple one-dimensional scheme was suggested where the solution is reconstructed along an arbitrarily selected

grid line. The method is straightforward, second-order accurate, and works well for bodies that are largely

aligned with the grid lines. In cases of complex bodies the choice of the reconstruction direction at several
points in the flow field can be ambiguous. Multidimensional schemes can remove this limitation. Kim et al.

[37] suggested a scheme, which uses a bilinear reconstruction procedure, which is reduced to a one-dimen-

sional linear one when there are no available points in the vicinity of the boundary to support the two-

dimensional stencil. Gilmanov et al. [38] recently introduced a more general scheme, which is applicable

to complex three-dimensional boundaries without special treatments. In the method of Gilmanov et al.

the immersed boundary is discretized with an unstructured triangular mesh and the reconstruction of

the solution is performed along the well defined, normal to the body direction – which can be easily

computed in a straightforward manner for a triangulated surface. The method [38] was applied to simulate
laminar flow past a sphere for Re 6 300. Gilmanov et al. reported nearly second-order spatial accuracy and

excellent agreement with benchmark computations for this flow on body-fitted meshes. A method employ-

ing the same reconstruction idea but is applicable only to 2D geometries was recently applied successfully to

carry out large-eddy simulation of turbulent flow in a plane channel with a wavy wall [39].

In this paper, we develop a new HCIB formulation applicable to three-dimensional flows with arbitrarily

complex immersed boundaries moving with prescribed motion. Our methodology maintains a sharp fluid/

body interface by discretizing the body surface using an unstructured, triangular mesh. The nodes of this

mesh constitute a set of Lagrangian control points, which are used to track the motion and reconstruct the
instantaneous shape of the moving immersed boundary. The reconstruction of the solution near the bound-

ary is carried out using a method that relies on the key idea presented in [38], i.e., by interpolation along the

normal to the body. Our method, however, differs substantially and in several aspects from that presented

in [38]. The method of Gilmanov et al. is only applicable to stationary bodies of simple (convex) shape while

the present approach is applicable to arbitrarily complex, moving bodies including bodies with multiple

moving appendages. In the present approach the governing equations are discretized using a novel hybrid

staggered/non-staggered grid arrangement (as compared to the non-staggered grid method employed in

[38]), which enhances accuracy in flows with moving boundaries and simplifies the implementation of
the solution reconstruction algorithm near complex immersed bodies. Finally, a quadratic interpolation ap-

proach is developed for reconstructing the solution near the body. This interpolation was found to improve

accuracy in problems with moving boundaries as compared to the linear interpolation method used in [38].

A grid convergence study is carried out for flow induced by a rigid sphere undergoing translational mo-

tion in a closed cubic container to establish the order accuracy of the method and second-order convergence

rate is demonstrated. The method is validated by applying it to two test cases. The first case is flow past a

sphere rotating steadily in a fluid, which is at rest at large distance from the sphere. This problem is formu-

lated and solved as a transient, moving-body problem with the sphere rotating at the prescribed angular
velocity relative to the fixed Cartesian grid. The computed steady results compare well with benchmark

numerical results [40]. The second case is flow induced by a flapping 3D wing undergoing complex and

continuous translational and rotational motion in a confined region. Experiments for this case have been

reported by Birch and Dickinson [41]. The calculated lift and drag forces time histories are shown to be in

good agreement with the measurements. The method is also applied to simulate flow past an undulating

fish-like body and a planktonic copepod of reasonably realistic anatomy performing an escape-like

maneuver.

In Section 2, the governing equations are presented and the basic numerical method is described. In
Section 3, the interface tracking algorithm and the implementation of boundary conditions on flexible, im-

mersed boundaries are discussed. Results are presented in Section 4 and finally some concluding remarks

are given in Section 5.
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2. The numerical method

2.1. The governing equations and boundary conditions

We solve the unsteady, three-dimensional, incompressible Navier–Stokes formulated in primitive vari-
able form. The governing equations are non-dimensionalized by a characteristic velocity U, a characteristic

length L, and a characteristic time scale 1/f (where f is a characteristic frequency of the flow) and formulated

in Cartesian coordinates, {xi}, as follows:
ouj
oxj

¼ 0; ð1Þ

St
Dui
Dt

¼ St
oui
ot

þ uj
oui
oxj

¼ � op
oxi

þ 1

Re
o2ui
oxjoxj

; ð2Þ
where D( )/Dt is the Lagrangian derivative, ui are the Cartesian velocity components, p is the pressure

divided by the density, St = fL/U and Re = UL/m are the Strouhal and Reynolds numbers, respectively,
and m is the kinematic viscosity of the fluid.

For a flow domain containing a deformable solid immersed body, boundary conditions for the velocity

vector and pressure field need to be prescribed on the dynamically evolving interface Cb(t) between the fluid

and the solid. Assume that the interface is discretized by a set of K material points, which lie on Cb(t) at all

times and can be described by their respective Lagrangian position vector rk(t)
rkðtÞ 2 CbðtÞ 8 t > 0; with rkð0Þ ¼ rko 8 k ¼ 1;K; ð3Þ
where rko is the initial location of the kth material point on Cb
o � Cbð0Þ. Assuming that all points on Cb(t)

move with a known velocity Uk(t), the shape of Cb(t) at time t can be obtained by solving the Lagrangian

advection equations for all material points on the surface (for k = 1, K):
ork

ot
¼ UkðtÞ; with rkð0Þ ¼ rko: ð4Þ
With the shape and location of the interface Cb(t) known at time t, boundary conditions for the Eulerian

fluid velocity vector u(r, t) must be prescribed at all points on Cb as follows:
uðrkðtÞ; tÞ ¼ UkðtÞ 8 k ¼ 1;K: ð5Þ

This boundary condition establishes the link between the Eulerian description of the fluid motion on the

fixed Cartesian domain and the Lagrangian description of the motion of the immersed boundary and must
be enforced at all points on the interface at every instant in time.

Neumann boundary conditions for the pressure field [42] on Cb(t) can be obtained by projecting the

momentum equation (2) on the direction normal to the interface as follows:
�nk � rp ¼ � op
on

� �
at r¼rkðtÞ

¼ nk � St
Du
Dt

� 1

Re
r2u

� �
at r¼rkðtÞ

; ð6Þ
where nk denotes the outward pointing, normal-unit-vector at point rk(t). For sufficiently high Re and since

the momentum equation is applied on the interface, the above equation can be written as follows:
� op
on

� �
at r¼rkðtÞ

¼ St nk � oU
kðtÞ
ot

� �
: ð7Þ
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The term in the right-hand side of this equation is the acceleration of the material nodes on the interface

and can be calculated from the known velocity of the interface. For a stationary or steadily moving body or

for a deforming body with St � 1, the above condition simplifies to the well-known homogeneous bound-

ary condition for the pressure field.

The above boundary conditions on the immersed interface need to be supplemented with appropriate
inflow, outflow, and far-field boundary conditions, which are discussed in subsequent sections of this paper.

Given a complete set of boundary conditions, the incompressible Navier–Stokes and continuity equations

constitute a well-posed problem if the following integral constraint is satisfied:
Z
C
u � dSþ

X
k¼1;N

UkðtÞ � nkDSk ¼ 0: ð8Þ
This equation expresses the global mass conservation in a domain C containing a flexible, immersed bound-
ary Cb(t).
2.2. The numerical method

In this section, we describe the numerical method for solving the governing equations in a Cartesian do-

main without flexible, immersed boundaries. We discretize the continuity and momentum equations on a

hybrid staggered/non-staggered mesh arrangement using second-order accurate, finite-difference formulas.

The divergence operator in the continuity equation and the pressure gradient and viscous terms in the
momentum equations are approximated using three-point central, second-order accurate differencing.

The convective terms in the momentum equations are discretized using the second-order accurate, up-

wind-biased QUICK scheme [43]. The discrete equations are integrated in time using a second-order accu-

rate, dual-time-stepping artificial compressibility approach [44,45]. We begin the description of our

numerical method by discussing the need for and describing the implementation of the staggered/non-

staggered grid arrangement.

It is well known that when three-point, central differencing is used to discretize both the velocity diver-

gence and the pressure gradient operators on a non-staggered grid the resulting discrete velocity field will be
divergence-free but the pressure field will, in general, exhibit non-physical, odd-even oscillations [46,47].

Discretization techniques aimed at eliminating spurious decoupling of the pressure nodes have been pro-

posed in the literature (see for example [46–48]) and successfully applied to a broad range of complex flows

([38,49,50]). Such methods introduce, either explicitly [46] or implicitly by the way the mass fluxes are con-

structed at cell interfaces [47], in the discrete continuity equation an artificial dissipation term, which is

third-order accurate in space and involves fourth-order spatial derivatives of the pressure field. For flows

with flexible immersed boundaries, however, such artificial dissipation terms could become very large in the

vicinity of the body – especially for sufficiently high values of the Strouhal number – leading to unaccept-
ably high errors in the discrete continuity equation. The reasons for this can be understood from Eq. (7),

which shows that the pressure gradient in the immediate vicinity of the body is directly proportional to the

Strouhal number. One can of course remedy this situation by refining the grid in the immediate vicinity of

the body but this approach could require excessively large computational grids, especially in the context of

Cartesian grid methods.

The above computational difficulties can be circumvented by adopting a staggered grid arrangement,

which guarantees the satisfaction of the discrete continuity to machine zero while ensuring the smoothness

of the discrete pressure field. Implementing a pure staggered grid discretization in a Cartesian grid ap-
proach, however, would be cumbersome due to need for special treatment of grid nodes near the body –

see [19] for a recent extensive discussion on the difficulties encountered in the implementation of a staggered

grid approach in a Cartesian method. In staggered grid formulations, for instance, the solid boundary is
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placed at half grid nodes (velocity nodes). This practice eliminates the need for explicitly specifying a pres-

sure boundary condition at the solid surface but complicates the implementation of boundary conditions

for the velocity field. For example, the discretization of the convective and viscous terms in the momentum

equations at velocity nodes immediately adjacent to the boundary requires knowledge of the velocity at fic-

titious nodes that lie outside of the computational domain [51]. In the context of the HCIB approach we
develop herein, this requirement could complicate the reconstruction of the solution near the body. For that

reason we develop a hybrid staggered/non-staggered grid approach, which eliminates the aforementioned

difficulties by combining the versatility and ease of implementation of the non-staggered mesh with the

superior accuracy of a staggered mesh approach.

Let u, v, and w be the three velocity components, i, j, and k the Cartesian grid indices in the x, y, and z

directions, respectively, and im, jm, km the corresponding number grid nodes in each direction. As in a col-

located, non-staggered grid approach both the pressure and velocity fields are defined and stored at the

(i, j,k) nodes and the boundaries of the computational domain are located at i = 1 and im, j = 1 and jm,
and k = 1 and km (see Fig. 1). The velocity components, however, are also defined at their respective half

node locations as required in a standard staggered grid approach – i.e., u, v, and w are also defined at the

(i ± 1/2, j,k), (i, j ± 1/2,k), and (i, j,k ± 1/2) nodes, respectively (Fig. 1). Similarly to the staggered grid ap-

proach, the continuity equation is satisfied at the (i, j,k) nodes while the momentum equations are satisfied

at their respective half nodes. The key feature of our hybrid formulation is that even though we satisfy the

discrete equations on a staggered grid arrangement, physical boundary conditions for the velocity compo-

nents need to be prescribed only at the boundaries of the computational domain as defined in a collocated

grid layout.
To illustrate the method consider the staggered-grid discretization of the governing equations formu-

lated in dual time-stepping, artificial compressibility form, as follows:
Fig. 1.

condit

circles:

discret

terms.
Pnþ1;‘þ1
i;j;k � Pnþ1;‘

i;j;k

Ds
þ dxu

nþ1;‘
i;j;k þ dyv

nþ1;‘
i;j;k þ dzw

nþ1;‘
i;j;k ¼ 0; ð9Þ

unþ1;‘þ1
iþ1=2;j;k � unþ1;‘

iþ1=2;j;k

Ds
þ Stdtu

nþ1;‘þ1
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iþ1=2;j;k þ dxP
nþ1;‘
iþ1=2;j;k ¼ 0;
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i;jþ1=2;k
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þ Stdtv

nþ1;‘þ1
i;jþ1=2;k þ YMnþ1;‘
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i;jþ1=2;k ¼ 0;
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i;j;kþ1=2 � wnþ1;‘

i;j;kþ1=2

Ds
þ Stdtw

nþ1;‘þ1
i;j;kþ1=2 þ ZMnþ1;‘

i;j;kþ1=2 þ dzP
nþ1;‘
i;j;kþ1=2 ¼ 0;

ð10Þ
where
dxð Þi;j;k ¼
ð Þiþ1=2;j;k � ð Þi�1=2;j;k

Dx
;

dtu
nþ1;‘þ1
iþ1=2;j;k ¼

�3unþ1;‘þ1
iþ1=2;j;k þ 4uniþ1=2;j;k � un�1

iþ1=2;j;k

2Dt
;

Schematic depicting the hybrid staggered/non-staggered grid layout. Filled circles: non-staggered grid nodes where boundary

ions are specified; filled triangles: staggered grid nodes where boundary conditions are obtained via linear interpolation; open

nodes where the continuity equation is solved and the convective and viscous terms of the u-momentum equation are

ized; open triangles: nodes where the u-momentum equation is solved using interpolated values for the viscous and convective
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Ds is the dual-time increment, Dt and Dx are the (physical) time and space increments, respectively, the

superscripts ‘ and n indicate dual and physical time levels, respectively, and XM, YM, and ZM are discrete

approximations of the convective and viscous terms in the x-, y-, and z-momentum equations, respectively.

Note that in order to facilitate the presentation of the algorithm we have used in the above equations the

Euler explicit scheme to integrate the equations in dual time – see subsequent discussion for more details on
the dual-time integration scheme. Also note that the superscript (n + 1, ‘) denotes the ‘th dual-time iterate

of the solution at the n + 1 physical time step. At convergence, ( )n+1,‘+1, ( )n+1,‘ ! ( )n+1 and the above

dual time iteration converges to the solution of the incompressible Navier–Stokes equations at the n + 1

physical time step. For the sake of simplicity, in what follows we adopt the simpler notation ( )‘ to denote

( )n+1,‘.

As we discussed above, the implementation of a pure staggered grid approach is complicated by the

need to discretize the spatial derivatives of the velocity field contained in the XM, YM, and ZM terms

at velocity nodes near the boundary. To remedy this situation we discretize these terms at the (i, j,k) nodes
in exactly the same way as in a non-staggered grid formulation and then use interpolation to obtain their

discrete values at the half nodes. Assuming for the time being that the velocity field is known at all (i, j,k)

nodes at the ‘ iteration level (see below for the approach we adopt to calculate the velocity components at

these nodes), we employ the second-order accurate, upwind-biased QUICK scheme [43] to discretize the

convective terms along with three-point, central differencing for the viscous terms to compute

XM ‘
i;j;k; YM

‘
i;j;k and ZM ‘

i;j;k terms. Note that since the discretization of these terms involves only standard,

non-staggered grid operators, the need for specifying boundary conditions at fictitious velocity nodes that

lie outside of the computational domain is eliminated. After the convective and viscous terms have been
discretized at the collocated grid nodes, we employ interpolation along the corresponding grid lines to

calculate XM ‘
iþ1=2;j;k; YM

‘
i;jþ1=2;k; and ZM ‘

i;j;kþ1=2, which are required for solving the momentum equations

(10).

Let us demonstrate the interpolation approach for XM ‘
iþ1=2;j;k, which is evaluated by interpolating along

the x-direction (refer to Fig. 1 for notation). As discussed above, boundary conditions for all three velocity

components are known at i = 1 and i = im, and XM ‘
i;j;k has been discretized at all interior nodes

(2 6 i 6 im � 1). We will also assume for the time being that boundary conditions for the u velocity com-

ponent are known at the staggered grid nodes i = 1 + 1/2 and im � 1/2 (see below for details) at the ‘ iter-
ation level, and, thus, the x-momentum equations (10) are solved only for 2 6 i 6 im � 2. The following

third-order accurate, backward-biased, interpolation formula is used to evaluate XM ‘
iþ1=2;j;k:
XM ‘
iþ1=2;j;k ¼

1

8
3XM ‘

iþ1;j;k þ 6XM ‘
i;j;k � XM ‘

i�1;j;k

� �
: ð11Þ
Since XM ‘
1;j;k is not available, this formula works only for i = 3 to im � 2. To evaluate XM at the staggered

node i = 2 + 1/2 the following forward biased version of the above interpolation formula is used (applied at

i = 2):
XM ‘
iþ1=2;j;k ¼

1

8
3XM ‘

i;j;k þ 6XM ‘
iþ1;j;k � XM ‘

iþ2;j;k

� �
: ð12Þ
The procedure for evaluating YM and ZM involves interpolation along the y- and z-directions of the grid in
a manner that is a straightforward extension of the above interpolation procedure along the x-direction.

With XM, YM, and ZM known and with prescribed boundary conditions for the staggered grid velocities

u3/2,j,k, uim� 1/2,j,k, vi,3/2,k, vi,jm� 1/2,k, wi,j,3/2, wi,j,km� 1/2, the discrete continuity and momentum equations (9)

and (10) can be iterated to advance the solution to the next dual-time level and obtain the pressure and

velocity components as in the staggered grid approach. After computing the velocity components at the half

grid nodes at the ‘ + 1 level, by solving Eq. (10), we interpolate to define a new approximation of the veloc-

ity components at all interior collocated grid nodes as follows:
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u‘þ1
i;j;k ¼

1

8
3u‘þ1

iþ1=2;j;k þ 6u‘þ1
i�1=2;j;k � u‘þ1

i�3=2;j;k

� �
; for i ¼ im� 1; ð13Þ

u‘þ1
i;j;k ¼

1

8
3u‘þ1

i�1=2;j;k þ 6u‘þ1
iþ1=2;j;k � u‘þ1

iþ3=2;j;k

� �
; for 2 6 i 6 im� 2: ð14Þ
With the velocity field known at all interior collocated nodes, the physical boundary conditions of the prob-

lem at hand can be applied to update the velocity field at all boundary nodes of the collocated grid layout.
Finally, as we mentioned above boundary conditions also need to be specified for the staggered grid veloc-

ities at the (3/2, j,k), (im � 1/2,j,k), etc. nodes. Note that by specifying these boundary conditions we elim-

inate the need for explicit pressure boundary conditions, thus, retaining in our algorithm yet another

desirable feature of the pure staggered grid approach. Simple, second-order accurate averaging is used

to to update these boundary values. For example, u‘þ1
3=2;j;k is updated as follows:
u‘þ1
3=2;j;k ¼

1

2
u‘þ1
1;j;k þ u‘þ1

2;j;k

� �
: ð15Þ
The overall procedure for advancing the solution from the n to the n + 1 physical time step can, thus, be

summarized as follows:

1. Use the solution at the n time level to initialize the velocity (both at the collocated and staggered grid

nodes) and pressure fields at the ‘ = 0 dual time level.

2. Using the QUICK scheme for the convective terms and central-differencing for the viscous terms, calcu-

late XM ‘
i;j;k; YM

‘
i;j;k; and ZM ‘

i;j;k terms at all interior collocated nodes.
3. Using the third-order interpolation formulas given by Eqs. (11) and (12), evaluate XM ‘

iþ1=2;j;k; YM
‘
i;jþ1=2;k;

and ZM ‘
i;j;kþ1=2.

4. Solve the governing equations (9) and (10) to advance the pressure and velocity fields to the ‘ + 1 iter-

ation level.

5. Using the third-order interpolation formulas given by Eqs. (13) and (14), evaluate u‘þ1
i;j;k; v

‘þ1
i;j;k; and w‘þ1

i;j;k at

all interior nodes of the collocated grid.

6. Update the velocity field at all boundaries of the collocated grid by applying the proper boundary con-

ditions at the inflow, outflow, far field, and solid boundaries of the computational domain.
7. Using linear interpolation, Eq. (15), update the velocity components at the boundary nodes of the stag-

gered grid.

8. If convergence in dual time has been achieved (based on some appropriate error norm) go to step 1 to

begin the dual iteration procedure for advancing the solution to the next physical time step. If not, con-

tinue the dual time iteration process at the current physical time step by returning to step 2.

To test the spatial resolution of the above hybrid staggered/non-staggered algorithm we compared its

accuracy for the well-known lid-driven cavity problem with the accuracy of its pure staggered-grid coun-
ter-part. We found that both the hybrid and staggered grid algorithms are second-order accurate in space

and on a given grid yield essentially identical results. Furthermore, both methods were able to reduce the

discrete divergence of the velocity field to machine zero. We also examined the sensitivity of the solutions

obtained with the hybrid algorithm to the spatial bias introduced by the linear interpolation schemes given

by Eqs. (11)–(14). We found that slightly better results are obtained when we symmetrize the overall scheme

(as in Eqs. (11)–(14)) by using forward-biased stencil to calculate the XM terms at the staggered nodes and

backward-biased stencil to calculate the velocity components at the collocated grid nodes. Additional evi-

dence of the accuracy of the hybrid formulation is presented in the subsequent sections of this paper.
The solution algorithm described above has been implemented using the pointwise implicit, four-stage

Runge–Kutta algorithm described in [52] to integrate the governing equations in dual-time – instead of
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the Euler explicit scheme given by Eqs. (1) and (2). The Runge–Kutta algorithm was enhanced with the

pressure-based, implicit residual smoothing operator of [53] and local (dual) time stepping to accelerate

its rate of convergence in dual time. Typically, 30–60 dual iterations are required per physical time step

to reduce the residuals by approximately three orders of magnitude. Finally except inflow, where boundary

conditions are known, and solid boundaries, where boundary conditions are specified as discussed in the
subsequent section, all other boundaries in this work were handled by implementing in the dual time-step-

ping artificial compressibility algorithm, the non-reflective characteristic approach proposed by Thompson

[54].
3. Treatment of flexible immersed boundaries

In this section, we discuss the numerical treatment of domains with complex, flexible, immersed bound-
aries, which move with prescribed motion. Our approach consists of the following two-step procedure: (1)

Lagrangian tracking of the immersed boundary, which requires the precise description of the boundary

shape and its relation to the fixed Cartesian grid and (2) local reconstruction of the solution near the im-

mersed boundary such that Eqs. (5) and (6) are satisfied exactly on the body at every instant in time. The

reconstruction algorithm we develop herein relies on the basic idea presented in [38] – i.e., the reconstruc-

tion of the solution along the local normal to the body. The algorithm of [38], however, is modified sub-

stantially in this work in order to make it applicable to bodies of arbitrary geometrical complexity and

to further enhance its accuracy in fluid/structure interaction problems.
In the HCIB formulation proposed in [38] the immersed boundary is treated as a sharp interface. Bound-

ary conditions are applied at nodes in the immediate vicinity of the immersed boundary (see Fig. 2) by

reconstructing the solution along the well-defined normal to the body direction using information from

interior nodes and the known boundary conditions on the body. To facilitate the reconstruction of the solu-

tion in the vicinity of arbitrarily complex immersed boundaries, the immersed boundary is discretized using
Fig. 2. 2D schematic of an immersed boundary in a Cartesian grid. Open squares mark the Lagrangian control points defining the

immersed boundary. Filled circles indicate the IB nodes were the solution is reconstructed. Triangles mark the boundary nodes of the

staggered grid layout (filled triangles: u velocity; open triangles: v velocity). Open circles indicate the last layer of nodes adjacent to IB

nodes where the discrete continuity equation is satisfied.
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an unstructured, triangular mesh with M triangular elements of size similar to the Cartesian grid spacing in

the vicinity of the body. Before we proceed with a description of the algorithm, let us introduce the notation

we use in this section. The position vector of the (i, j,k) Cartesian grid node (i = 1 to im, j = 1 to jm, and

k = 1 to km) is ri,j,k, while the position vector of the centroid of the mth triangular element (m = 1 to M)

on the interface is rm+1/2. Finally, nm+1/2 denotes the normal unit vector at the centroid of the mth trian-
gular element, which can be readily computed after the interface mesh has been constructed.

3.1. Interface tracking

The first step in the implementation of the algorithm is to determine the location and shape of the im-

mersed boundary. Since in this work we assume that the motion of the body is prescribed, this step is

straightforward. The location of the body at every physical time step can be determined by solving Eq.

(4) for each vertex of the unstructured, surface mesh. Assuming that the location of all vertices (Xk,Yk,Zk)
n

(for k = 1, K) at the n time step is known, their location at n + 1 can be determined via the following,

second-order accurate integration scheme:
rnþ1
k ¼ rnk þU

nþ1=2
k Dt; ð16Þ
where Uk is the prescribed velocity vector of the kth surface node.

3.2. Identification of immersed boundary nodes

Having established the shape and location of the interface, the next step is to identify the near-boundary

nodes of the Cartesian collocated grid (‘‘black’’ nodes in Fig. 2) where the velocity vector needs to be recon-

structed in order to obtain boundary conditions – we shall denote such nodes as immersed boundary (IB)

nodes. In [38], we developed an algorithm for determining the IB nodes that is strictly applicable to geo-

metrically simple, convex bodies – i.e., bodies that contain all lines connecting any two points on their sur-

face. This algorithm needs to be generalized if the method is to be applied to simulate flows past complex
aquatic animals, insects and birds, which in general consist of a main flexible body of concave shape with

multiple flexible appendages, wings, fins, legs, etc., whose thickness is often too small to be resolved by the

computational grid. Furthermore, since the location of the IB nodes changes at every time step any algo-

rithm for determining them should be simple to implement and computationally very efficient. The algo-

rithm described in the subsequent steps exhibits these features and can be applied to locate the IB nodes

for bodies of arbitrary geometry.

First, we locate all Cartesian grid nodes that are in the immediate vicinity of the body. At this stage we

do not distinguish between internal and external nodes to the body but rather seek to identify all near-
boundary nodes located within a small search radius ds0 from some region of the body. These nodes are

marked with circles (open and filled) in Fig. 3. A Cartesian grid node will be designated as a near-boundary

node if its position vector rnb satisfies the following condition:
min
m¼1;M

jrnb � rmþ1=2j < ds0; ð17Þ
where ds0 is a prescribed search radius (see Fig. 3), which is set approximately equal to the minimum Carte-

sian mesh spacing in the vicinity of the body. After the above search has been completed a total of NB

Cartesian grid nodes (i.e., nb = 1, NB) have been identified.
In the second step of the algorithm we separate the NB near-boundary nodes into nodes internal and

external (IB nodes) to the body as follows. For every near-boundary Cartesian grid node nb, we first iden-

tify all triangular elements rm+1/2 located within a sphere of radius ds0 centered at node nb (see Fig. 3) and

for these triangular elements we examine the sign of the scalar product nm+1/2 Æ (rnb � rm+1/2).



Fig. 3. Schematic illustrating the search algorithm for identifying the IB nodes for a complex immersed boundary. Circles (open and

filled) are the near-boundary nodes that are identified in the first step of the search procedure. Open and filled circles mark the IB and

internal near-boundary nodes, respectively, as classified in the second step of the algorithm. Square nodes are nodes internal to the

body located at least one node away from the interface (i.e., internal, non-near-boundary nodes).
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If nm+1/2 Æ (rnb � rm+1/2) > 0 for at least one boundary node rm+1/2 within the local search neighborhood,
then the Cartesian grid node rnb is external to the body and, thus, an IB-node (see nodes A or B in Fig. 3).

If nm+1/2 Æ (rnb � rm+1/2) < 0 for all triangular elements rm+1/2 within the local search neighborhood, then

the Cartesian grid node rns is internal to the body (see node C in Fig. 3).

After all near-boundary Cartesian grid nodes have been classified as either IB or internal to the body, all

other grid nodes interior to the body (marked with squares in Fig. 3) can be easily identified as those located

along a grid line connecting two interior near-boundary nodes at opposite sides of the body (such as the

nodes between nodes D and E in Fig. 3).

The above algorithm is general and, thus, applicable to arbitrarily complex bodies. Its capabilities
are demonstrated in subsequent sections of this paper where it is successfully applied to simulate flow

past an undulating fish-like body as well as flow past a reasonably realistic model of a planktonic

copepod.

3.3. Reconstruction of the velocity field

After the IB nodes have been determined, boundary conditions need to be specified for the velocity field

at all IB nodes at the new physical time level n + 1. Since the immersed boundary is tracked as a sharp
interface, Dirichlet boundary conditions for the velocity field are known at all nodes of the unstructured

surface mesh (Eq. (5). Let Unþ1
m denote any one of the three components of Um on the immersed boundary

and un+1,‘+1 denote the corresponding velocity component at a Cartesian grid node. With reference to

Fig. 4, the boundary conditions for un+1,‘+1 at the IB node b are determined as follows.

According to the notation of this figure, IB node b is associated with the triangular element with normal

n on the interface mesh. Since nn+1 is known, we can construct the line that passes through node b and is

parallel to nn+1. This line intersects the surface element at point a (the projection of node b on the immersed

boundary) and the Cartesian grid element defined by nodes a–b–c–d at point c. Since Un+1 is known at all
vertices of the surface element from (4) to (6), Unþ1

a can be computed by linear interpolation among the

vertices of the triangular surface element



Fig. 4. Schematic depicting the reconstruction of the solution at an immersed boundary node b by interpolating along the local normal

to the surface of the body.
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Unþ1
a ¼

X
k¼1;3

Unþ1
k

,
sk

 !, X
k¼1;3

1

,
sk

 !
; ð18Þ
where 1 6 k 6 3 are the three vertices of the considered triangular element, and sk is the distance between a

and k-vertex
sk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxa � xkÞ2 þ ðya � ykÞ

2 þ ðza � zkÞ2
q

: ð19Þ
Similarly, unþ1;‘þ1
c can be obtained by interpolating (using an interpolation formula similar to (18) among

the internal Cartesian grid nodes a–b–c–d, where the solution is already known at the previous dual time
step (quantities ( )n+1,‘ are already known at all grid nodes).

With Unþ1
a and unþ1;‘þ1

c known, the velocity components unþ1;‘þ1
b at the IB node b can now be computed

via interpolation. We employ the following quadratic interpolation procedure, which was found to enhance

the overall accuracy of the algorithm in problems with moving boundaries relative to the linear interpola-

tion procedure used in [38]. Let s be the arc-length variable that measures length along the normal from the

surface node a (i.e., sa = 0) The velocity component u is assumed to vary in a quadratic manner with s as

follows:
uðsÞ ¼ C1s2 þ C2sþ C3; ð20Þ

where C1, C2, and C3 are coefficients to be determined. There is a total of four unknowns, the three coef-

ficients Ci and unþ1;‘þ1
b , which can be fully determined by solving the following system of linear equations:
uð0Þ ¼ Unþ1
a ¼ C3;

uðsbÞ ¼ unþ1;‘þ1
b ¼ C1s2b þ C2sb þ C3

uðscÞ ¼ unþ1;‘þ1
c ¼ C1s2c þ C2sc þ C3

ðdu=dsÞnþ1;‘þ1

s¼sb
¼ 2C1sb þ C2:

ð21Þ
To close the above system of equations, we calculate the derivative at s = sb via linear interpolation between

its values at the mid-points of the segments ab and bc – where du/ds can be calculated with second-order

accurate central differencing – as follows:



Fig. 5.
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du
ds

� �
s¼sb

¼ a
unþ1;‘þ1

b � Unþ1
a

Dsab
þ ð1� aÞu

nþ1;‘þ1
c � unþ1;‘þ1

b

Dsbc
; ð22Þ
where a = Dsbc/Dsac, and Ds is a distance between specified points. Eqs. (21) and (22) form a closed system

of four unknowns and four equations, which can be solved to determine unþ1;‘þ1
b .

It is important to note that at some IB nodes located in regions where the curvature of the body is chang-

ing rapidly in space, the projection onto the surface of the body may not be uniquely defined or even exist

(see nodes F, G, andH in the schematic shown in Fig. 3). At such nodes, boundary conditions for the veloc-

ity components are reconstructed by interpolating along the line defined by the IB node and the nearest

node on the surface of the body.
In the above algorithm, the determination of the normal vectors to the body and the interpolation pro-

cedure for computing Unþ1
a for all IB nodes need to be carried out only once per physical time step. The

velocity boundary conditions at the IB nodes, however, are enforced in an iterative manner and, thus, need

to be updated during every dual time iteration. With boundary conditions for the velocity field at all IB

nodes prescribed at the ‘ + 1 dual time level, the iterative scheme described in the previous section can

be applied to advance the solution at all interior nodes in dual time. During the iterative process, nodes

interior to the immersed boundary are blanked out and do not participate in the calculation.

3.4. The problem with ‘‘freshly cleared’’ nodes

An important issue that requires careful consideration when applying a sharp-interface method to fluid/

structure interaction problems arises when the motion of the immersed boundary relative to the fixed Carte-

sian grid exposes into the fluid a grid node, which at the previous time step was in the interior of the body

[15]. To illustrate the problem, consider a grid node that was in the interior of the body at time level n but

after the body is displaced during the n + 1 time level it emerges in the fluid. The numerical difficulty in this

situation stems from the lack of physically realistic values for un and un� 1, which are required for satisfying
the momentum equations (10) at such a node. In the cut-cell formulation of Udaykumar et al. [15] this issue

of freshly cleared cells was addressed using a cell-merging formulation in conjunction with quadratic inter-

polation among neighboring grid nodes in the fluid. Because of the dual-time stepping scheme we adopt in

this work and the fact that the boundary conditions at IB nodes are enforced iteratively at the n + 1 time

level, this issue does not pose any particular difficulty in our algorithm as long as the previously solid node

first emerges into the fluid as an IB node (see Fig. 5). This condition can be easily enforced by selecting the
2D schematic of an immersed boundary moving relative to the fixed Cartesian grid. Black line: body location at time t. Red

ody location at time t + Dt. The classification of the various nodes is according to the notation introduced in Fig. 2 and is based

location of the body at time t. (For interpretation of the references to color in this figure legend, the reader is referred to the web

of this article.)
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physical time step to ensure that the body never transverses an entire computational cell within one time

step. In other words, the following Courant-like condition needs to be satisfied for all n:
Dt 6
h

max
m¼1;M

Un
m

�� ��; V n
m

�� ��; W n
m

�� ��	 
 ;

where U, V, and W are the Cartesian components of the immersed boundary velocity vector U, and h is the
minimum grid spacing in the vicinity of the immersed boundary. Since in this work the motion of the im-

mersed boundary is prescribed, whether the time increment satisfies this condition or not needs to be

checked once at the start of the computation. It is important to note that in all subsequently discussed com-

putations the above condition turns out to be less restrictive than the Courant condition for stability of the

dual time-stepping algorithm and, thus, it does not impose any additional stability burden on the overall

algorithm.
4. Results and discussion

4.1. Order of accuracy: flow due to an oscillating sphere in a cavity

To demonstrate the second-order accuracy of the method we carry out a grid refinement study for a test

problem, which is the three-dimensional analogue of the problem used by Udaykumar et al. [15] for the

convergence study of their method. A rigid sphere of diameter D = 1 is placed in a closed cubic box with

side H = 2 filled with an incompressible, viscous fluid, which is initially at rest. Flow is induced by oscillat-
ing the sphere back and forth along the horizontal (x) direction. The motion is initiated impulsively at t = 0

and the location of the sphere is prescribed as follows:
xkðtÞ ¼ x0k þ x0ð1� cosð2ptÞÞ; ykðtÞ ¼ y0k ; zkðtÞ ¼ z0k 1 6 k 6 K; ð23Þ
where x0 = 0.125D is the amplitude of oscillation, and r0k , rk are the initial and current locations of the k-th

node of the surface of sphere. The Reynolds number for this flow is based on the sphere diameter and the

maximum sphere velocity and is set equal to Re = 20.

Four, uniformly spaced, successively finer mesh sizes are used for error analysis, with 203, 403, 803, and

1603 grid points, respectively, and the finest mesh solution is considered to be the �exact� solution. On all

grids the same small physical time step (Dt = 0.005 was employed in order to emphasize the spatial resolu-

tion of the method, as was also done in [15]). For all grids, the simulation was initiated impulsively and was

continued for one complete period. At the end of the period, the L1 and Lq norms of the error the u-veloc-
ity component are calculated as follows:
e1N ¼ max
i¼1;N3

uðNÞ
i � uei

��� ���; eqN ¼ 1

N 3

XN3

i¼1

uðNÞ
i � uei

��� ���q
" #1=q

; ð24Þ
where e1N and eqN are the infinity and qth error norms, uðNÞ
i is the u-velocity component at the ith node of the

N3 mesh, and ue is the �exact� velocity field calculated on the 1603 grid.

The results of the grid refinement study are summarized in Fig. 6(a) which shows the variation of the L1,

L1 and L2 norms of the error with grid spacing in a log-log scale. The lines with slope one and two are also

shown for reference. Fig. 6(b) also shows the instantaneous streamlines and pressure field at the moment

when the error was calculated. It is evident from Fig. 6(a) that the method converges at a rate which is close

to second order. A small deviation from strict second-order slope is observed only in the convergence of the

L1 error norm but this should be attributed to the lack of a true exact solution of the governing equations –



Fig. 6. Grid convergence study for flow in a closed cube filled with a horizontally oscillating sphere. (Top) Convergence of the L1, L1

and L2 norms of the error for the velocity field. The solution on the 1603 grid is considered to be the exact solution. (Bottom)

Instantaneous streamlines and pressure contours on the finest mesh. The slope of the L1 line is 1.77 while the slope for both the L1 and

L2 lines is essentially equal to 2.
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similar conclusion was also reached by Udaykumar et al. [15]. The results shown in this figure, however,

make a strong case that our method is at the very least nearly second-order accurate.

To further demonstrate the accuracy of our method we also use the following Richardson-estimation

procedure used by many authors to estimate the accuracy of a numerical solutions (see [55,56]). Let fN de-

note the numerical solution on the N3 mesh. Assume that the discrete solution is a c-order approximation to
its accurate value fexact, i.e.
Table

Rate o

Norm

L1
L1

L2
f N ¼ f exact þ CðhNÞc;

where C is a function not dependent on hN is the uniform spacing of the N3 mesh. Assuming that the flow

changes gradually and it has no singularity points, it can be shown that
c ¼
log f N � f N=2

�� ��= f N=2 � f N=4
�� ��	 


log 2
;

where i i denotes an error norm (L1, L1 or L2). If c . 2 the solution is second-order accurate. We apply the

above procedure for N = 81 (using solutions obtained on meshes 213, 413, and 813) and N = 161 (using solu-

tions on meshes 413, 813, and 1613), respectively, to calculate c for successively refined meshes. For each

case, we use all three norms to compute the error and the results are summarized in Table 1. Note that this

error-estimation procedure is approximate and its output should be expected to asymptote to the rate of

convergence of the numerical solution as the mesh is refined. In that sense, the results shown in Table 1
further reinforce those shown in Fig. 6(a) and support our assertion about the second-order accuracy of

our method.

4.2. Validation test cases

4.2.1. Flow due to a steadily rotating sphere

For the first validation test case, we simulate flow induced by a sphere of radius R0 rotating at constant

angular velocity X about a diameter directed along the z-axis in an incompressible, viscous fluid of density q
and kinematic viscosity m, which is at rest at large distances from the sphere. The Reynolds number for this

flow is defined as Re ¼ XR2
0=m. For Reynolds numbers in the range Re = 1–100, benchmark solutions for

this problem have been reported by Dennis et al. [40] who solved numerically the steady, axisymmetric

Navier–Stokes equations in spherical, polar coordinates using a vorticity-streamfunction formulation. Even

though within this range of Reynolds number this flow exhibits steady and axisymmetric solutions, we solve

the full three-dimensional and unsteady problem with the sphere starting to rotate impulsively from rest

relative to the stationary Cartesian grid. Such level of modeling allows us to validate the accuracy of the

basic flow solver and gain some confidence about the correct implementation of the numerical infrastruc-
ture we have developed for handling flows in domains with moving immersed boundaries. A more stringent

validation case of the moving-body aspects of our formulation, however, will be provided in the subsequent

section.
1

f convergence c calculated for different error norms and two sets of meshes

Grids

213, 413, 813 413, 813, 1613

1.57 1.78

2.72 2.32

2.08 1.99
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The Cartesian computational domain is a (10R0)
3 cube discretized with a 1003 grid. The surface of the

sphere is discretized with an unstructured, triangular mesh consisting of 7700 elements. The sphere is placed

at the center of the cubical domain and starts to rotate impulsively at t = 0 with constant rotational velocity

X about the z-axis (see Fig. 7). The Cartesian grid is uniform in all three directions within a (2.5R0)
3 cube

containing the sphere, with grid spacing Dx = Dy = Dz = 0.03R0. Hyperbolic tangent stretching is used to
stretch the grid in the remaining of the computational domain. As discussed above, all results have been

obtained by integrating the 3D, unsteady Navier–Stokes in time from t = 0, when the sphere starts rotating

from rest, until a steady-state and axisymmetric solution is achieved using 100 time steps per rotation per-

iod (Dt = 0.01T, where T = 2p/X). At every physical time step, the sphere is displaced rotationally within the

fixed Cartesian mesh by solving Eq. (4) to update the location of every Lagrangian control node on the

surface. The velocity of the sphere at each Lagrangian node k is defined by prescribing the surface Cartesian

components U, V, and W as follows:
Fig. 7.

the y =

start o
Uk ¼ �XY k; V k ¼ XX k and W k ¼ 0
which correspond to steady, counter-clockwise rotation of the sphere around the z-axis.

Calculations have been carried out for three Reynolds numbers, Re = 20, 50, and 100 on the same com-

putational grid. Grid sensitivity studies showed that this grid resolution (1003) is adequate for obtaining

grid independent results. Characteristic-based, non-reflective boundary conditions [54] were applied at

all six boundaries of the Cartesian domain. Sensitivity studies carried out to assess the potential effect of
Flow induced by a sphere rotating steadily relative to the fixed Cartesian grid. Instantaneous snapshots of velocity vectors at

0 diametral plane depicting the early stages of the flow evolution toward steady state for Re = 100. Time is measured from the

f the impulsive rotational acceleration and T is the rotation period of the sphere.
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the extent of the computational domain on the accuracy of the computed flow fields showed that (10R0)
3

cube domain is the best compromise between accuracy and computational efficiency (see comments below).

Several snapshots of instantaneous velocity vectors at the y = 0 diametral plane for the Re = 100 case

are shown in Fig. 7 to document the early stages of the evolution of the flow from the beginning impulsive
Fig. 8. Steady-state velocity vectors and xy vorticity contours at the y = 0 diametral plane for a steadily rotating sphere: (a) Re = 20;

(b) Re = 50; and (c) Re = 100. Vorticity levels: from �0.3 to 0.3 by 0.03.
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rotation of the sphere to the final axisymmetric steady state, which for this Re is shown in Fig. 8. The imbal-

ance between the component of the centrifugal force in the tangential to the sphere direction and the pres-

sure gradient, which is directed in the direction normal to the sphere, gives rise to a flow directed from the

two poles toward the equator. The flow from the northern and southern hemispheres collide at the equator

forming an equatorial jet that is directed radially outward. To satisfy conservation of mass and since the
sphere rotates in an unbounded domain with the fluid at infinity being at rest, the streamlines have to close

to form two toroidal vortex rings located symmetrically with respect to the equator. During early times the

two rings form near the poles but subsequently are advected by the flow toward the equator where they

begin to move away from the sphere in the radial direction. In qualitative agreement with earlier experimen-

tal [57] and numerical [40] studies, our computations show that the inflow to the poles is slower and spread

over a larger region whereas the equatorial jet is narrow and very fast. It is also worth noting that the

computed flow remains perfectly axisymmetric at all instants in time.

The computed steady state flow patterns at the y-plane of symmetry for all three Reynolds numbers are
shown in Fig. 8. These results are in excellent agreement with those reported by Dennis et al. [40]. As the

Reynolds number increases, the polar inflow region tends to become slower and spread over a larger area
Fig. 9. Radial velocity profile along the equator for Re = 20,50, and 100. Lines: present computations; points: Benchmark data from

[40]. The radius of the sphere is R0.

Table 2

Comparison of the measured [40] and calculated angle hs

Re hDennis hcalc e (%)

20 62.6 61.6 1.6

50 69.4 68.2 1.7

100 73.8 72.1 2.3
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while the equatorial jet becomes narrower and considerably faster. The extent of the polar inflow region is

quantified in terms of the angle hs between the z-axis and the radius that passes through the center of the

toroidal vortex ring (see Fig. 8 for definition). In Table 2, we compare our results for hs with those reported

in [40] and the agreement is very good.

Additional evidence establishing the accuracy of our method is provided in Fig. 9, which compares our
computations with the results of Dennis et al. [40] in terms of the radial velocity profiles along the equator

for all three Reynolds numbers. The agreement between the two numerical solutions is very good.

4.2.2. Flow due to a flapping wing

This test case provides a far more stringent test of the fluid/structure interaction algorithm as it involves

flow generated by a continuously flapping, three-dimensional wing. The experiments were carried out by

Birch and Dickinson [41] who constructed a dynamically scaled robotic insect with wings cut in the shape

of a Drosophila wing (see also [58,59]). The robot was placed in a rectangular tank filled with mineral oil
and its motion was controlled by a set of digitally controlled motors that allowed inputting into the robot

and testing a broad range of kinematical scenarios (see [41] for details).

The geometry of the wing was provided by Dickinson [60] and its 3D, plan and cross-sectional views are

shown in Fig. 10. The cross-section of the wing is an ellipse with 12% thickness of the chord length. The

surface of the wing is discretized with a triangular mesh with 1332 elements (Fig. 10).

We carry out Navier–Stokes calculations using the kinematical scenario considered in [41], which in-

volves both translational and rotational motion of the wing. The configuration and positions of the wing

at equal spaced instants in time for one half of the flapping cycle (up-stroke) are shown of Fig. 11. The
coordinate system (x,y,z) is fixed to the wing with the z-axis normal to the stroke plane. The wing is flapped

through an angle w of amplitude with an angle of attack a at mid-stroke. The motion is rather complex and
Fig. 10. The robotic insect wing of Birch and Dickinson [41]. Unstructured triangular surface mesh. (a) Three-dimensional view; (b)

planar view; and (c) cross-sectional view.



Fig. 11. The robotic insect wing of Birch and Dickinson [41]. Coordinate system and instantaneous location and orientation of the

wing at equally spaced time intervals throughout the up-stroke.

478 A. Gilmanov, F. Sotiropoulos / Journal of Computational Physics 207 (2005) 457–492
one wing stroke can be divided into four stages: two translational phases, during upstroke (counter-clock-

wise rotation) and downstroke (clockwise rotation), respectively, when the wing undergoes azimuthal rota-

tion around the z-axis with constant tip-velocity ut and at fixed angle of attack a; and two rotational phases

when the direction of azimuthal rotation is reversed while the wing simultaneously undergoes rotation

along its long (spanwise) axis. With reference to Fig. 12, the following parameters are introduced in order

to completely define the wing kinematics: T is the stroke period (upstroke plus downstroke); Dsr is duration
of the rotational phase; Dst is the duration of wing deceleration/acceleration; and s0 is the time when the

rotational phase begins. All times are given as a percentage of the stroke period T.
During the deceleration at the end of the stroke and the acceleration at the beginning of the stroke, the

wing tip velocity ut is prescribed as
uþt ¼ uþ0 cos½pðs� s1Þ=Dst�; s1 6 s 6 s1 þ Dst; ð25Þ

where uþt ¼ ut=U 0; uþ0 ¼ U tip=U 0, s = t*U0/L0, where L0 is the length of the wing (Fig. 10(b)), U0 is the

velocity at the point of the radius of the second moment of wing area that is determined by

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiH
Sr

2 dS=S
q

, t* is the dimensional time, s1 is the time instant when the deceleration near the end of

stroke starts (see Fig. 12) and s1 + Dst is the time at which the acceleration at the beginning of the next

stroke ends. The angle of attack a is constant during upstroke and downstroke except at the near the begin-

ning and the end of the stroke. As stroke reversal is approached, a changes with time such that the angular

velocity _a is given by
_aþ ¼ 0:5 _aþ0 1� cos½2pðs� s2Þ=Dsr�f g; s2 6 s 6 s2 þ Dsr; ð26Þ



Fig. 12. The robotic insect wing of Birch and Dickinson [41]. Prescribed wing kinematics for a complete stroke. Solid line:

Translational velocity. Dash line: rotational velocity.
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where _aþ ¼ _aL0=U 0, _a
þ
0 is a constant, s2 = s1 + Dst/2 + s0 is the non-dimensional time at which the rotation

starts, U0 is the reference velocity, so Re = L0U0/m. We should mention that uþ0 and _aþ0 has opposite sign
during opposite stroke reversals.

We carry out simulations for the following set of parameters: w = 160�, a = 45�, s0 = �0.24 T, Ds = 0.24

T, Dst = 0.16 T, L0 = 0.19 m, U0 = 0.166 m/s, Utip = 0.26 m/s. These parameters where extracted from the

kinematics programmed into the robot shown in Fig. 11 of [41] paper and other data reported in that paper.

At the bottom and top of the box non-reflecting boundary conditions were used, while non-slip boundary

conditions were prescribed on all other boundaries, which were placed at the same distance from the wing

as the walls of the tank used in the experiment of [41].

Calculations were carried out on two grids with 403 and 803 grid nodes, respectively. For both grids a
physical time step of Dt = 0.01 was employed and the calculations were continued for four periods. The

results reported herein are those obtained for the last stroke. Birch and Dickinson [41] reported measured

time-series of lift and drag forces acting on the wing throughout its motion. To compare our simulations

with their data we calculate the force acting on the wing by integrating the pressure and viscous stresses

over the wing surface as follows:
F i ¼
Z
R
½�pdij þ sij�nj dR; ð27Þ
where p is the pressure, sij is component of the stress tensor, dij is delta function, R is the wing surface. The

calculated forces are compared with the measurements of [41] in Fig. 13. As seen in the figure, even the coarse

mesh is adequate for capturing the essential features of themeasured force histories with reasonable accuracy.



Fig. 13. The robotic insect wing of Birch and Dickinson [41]. Measured and computed drag (top) and lift (bottom) forces (in Newtons)

for one complete stroke. Solid line: 803 mesh; dash line: 403 mesh; circles: measurements from [41].
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The fine mesh prediction, however, is in very good agreement with the measurements both qualitatively and
quantitatively. Further grid refinement did not change the results in any appreciable way. To illustrate the

complexity of the flow induced by the flapping wing, Fig. 14 shows several snapshots of instantaneous stream-

lines at a z = const plane at various instants in time are marked in Fig. 13 during the wing stroke.

4.3. Simulation of flow past aquatic animals

In this section, we seek to demonstrate the applicability of the method to simulate flows induced by arbi-

trarily complex, flexible immersed boundaries and underscore its potential as a powerful simulation tool for
biofluids problems. We consider two cases: (1) flow induced by a mackerel fish performing lateral undula-

tions and (2) flow past a reasonably realistic model of a planktonic copepod, including the body and all its

major legs and appendages, performing an escape-like maneuver. For both cases, the shapes of the bodies

and their kinematics are based on biological observations and data reported in the literature.

4.3.1. Numerical simulation of fish-like swimming

We simulate the flow induced by a fish-like, flexible, three-dimensional object of length L moving in a

straight line with constant axial velocity U and undulating in the lateral direction with a characteristic fre-
quency f. Lengths are scaled with L, velocities are scaled with U, and time is scaled with f�1. The coordinate

system (x,y,z) is that fixed to the moving body and is related to the inertial coordinate system (X,Y,Z) as

follows: x = X + Ut, y = Y, and z = Z.
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The shape of the three-dimensional body is based on measurements obtained from a real mackerel fish.

The fish was frozen and sliced in several fillets. The cross-sectional dimensions of each fillet were carefully

measured and the cross-sections were then stacked together along the fish main axis to construct the
Fig. 14. The robotic insect wing of Birch and Dickinson [41]. Instantaneous streamlines at the z=constant mid-plane for one complete

stroke. Specific time instants are defined in Fig. 13.
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three-dimensional body. With the exception of the caudal fin (fish tail) all other fins are not modeled. The

body surface is discretized with 6670 triangular elements and is shown in Fig. 15.

Fish-like swimming motion is prescribed by specifying the lateral displacement of the fish backbone as a

function of time. We consider biologically inspired kinematics mimicking body and caudal fin (BFC) loco-

motion, which is the most frequently encountered swimming mode in fishes [61]. In the BFC mode fish
swim by bending their body into a backward-traveling undulatory wave that extends all the way to their

caudal fin. To mimic such motion, we prescribe the lateral displacement of the fish body in terms of a trav-

eling wave of varying amplitude [62] as follows:
Fig. 16

body.
yðx; tÞ ¼ aðxÞ sinðkx� xtÞ; ð28Þ

where a(x) is the wave amplitude that is assumed to vary non-linearly along the fish body, the k = 2p/k is the
wave number, corresponding to wave length k, and the circular frequency of oscillation x. The wave ampli-
tude is a quadratic function of x
aðxÞ ¼ a0 þ a1xþ a2x2; ð29Þ

where the constants a0 = 0.02, a1 = �0.08, and a2 = 0.16 are selected to ensure that a(x) becomes maximum

at the tail. The precise form of the function a(x) is shown in Fig. 16 and is taken from [2].

The following non-dimensional numbers are important in fish-like locomotion: (1) the Reynolds num-

ber, which is typically based on the fish length and swimming speed, Re = UL/m, (2) the Strouhal number,
Fig. 15. Three dimensional view of mackerel body.

. Prescribed variation of the amplitude of the undulatory motion a(x) (see Eq. (29)) with distance along the axis of the fish-like

From [2].
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which is based on the mean lateral excursion of the caudal fin at the trailing edge A = 2amax, where

amax = a(0.5), and the tailbeat frequency f = x/2p: St = 2famax/U = amaxx/(pU); and (3) the slip ratio, which

is the ratio of the swimming speed to the speed at which the undulatorywave travels down the body (V = x/k),
Slip = U/V = U/(x/k).

Laboratory experiments with waving flat plates [63] and actively swimming fish [64] have shown that the
structure of fish wakes depends critically on the velocity slip. For slip greater than one, the wake is a clas-

sical Karman street consisting of two rows of vortices with their jet-like common flow directed toward the

fish, thus, resulting in a net drag force. For slip near unity the wake consists of a single row of vortices with

laterally oriented jets and zero axial force. Finally, for slip less than one, i.e., when the body wave travels

faster than the flow, a reverse Karman street develops in the wake with two rows of vortices rotating in such

a manner that their common-flow jet is directed away from the fish. Reverse Karman street results in a

thrust force and is the primary mechanism via which fish produce propulsive force using their caudal fin

(Triantafyllou and co-workers [62], Müller et al. [65]). All these experiments have been performed at Rey-
nolds numbers high enough (Re > 104) for viscous effects not to be the primary consideration – Strouhal

number and slip being the dominant parameters. For that reason, essentially all aspects of fish-like locomo-

tion have been well reproduced by the potential flow simulations of Triantafyllou and co-workers [62,66].

To demonstrate the capability of our method to reproduce the effect of slip on the wake structure of an

undulating fish-like body, we carry out a series of inviscid simulations for various Slip velocities. The vis-

cous terms in the governing equations are set equal to zero, only the no-flux boundary condition is imposed

on the fish body while the tangential velocity component on the fish body is calculated by linear extrapo-

lation from interior nodes. All other features of the numerical method remain the same. The Cartesian com-
putational domain is a 7L · 2L · L cube and is discretized with a 1003 grid. The fish is placed 2L

downstream from the inlet plane in the axial direction and is centered in the vertical and transverse direc-

tions. Uniform grid with spacing h = 0.026 is used in a 1.5L · 1.5L · 0.5L box, which encloses the fish at all

times, and stretched grid is used in the remaining domain. Fig. 17 shows calculated instantaneous stream-

lines at the same instant within the period for three slip ratios. In qualitative agreement with the

experimental observations, the simulated wake is a classical (drag) Karman street for Slip = 1.1 and consists

of a single row of vortices for Slip = 1.0. For Slip = 0.6, however, a reverse Karman street emerges with

a thrust component. To quantify the effect of the Slip parameter on the fish wake structure, we have
calculated the thrust coefficient CT for all three simulated cases. The thrust coefficient is defined as

follows:
CT ¼ F x

0:5qU 2S
;

where Fx is the mean axial force, which is calculated by integrating the calculated pressure field over the fish

surface and S is the wetted area of the fish. The calculated values of the thrust coefficient are

CT = �6 · 10�3, 1.5 · 10�3, and 4 · 10�3 for Slip = 1.1, 1.0, and 0.6, respectively. The negative sign for

the Slip = 1.1case indicates a net drag force on the body, which is consistent with the structure of the wake

shown in Fig. 17.

Reverse Karman street for Slip < 1 can also be reproduced numerically with a full viscous simulation.
Such undertaking, however, is far more challenging computationally as it requires very fine meshes in

the vicinity of the body to accurately resolve the body boundary layer. Fig. 18 shows the results of a viscous

simulation for Re = 3000, Slip = 0.6, and St = 0.5. Calculations have been carried out on two meshes, the

coarse, ‘‘inviscid’’ mesh used in the previous calculations and a much finer mesh with more than 3.0 million

nodes (210 · 120 · 120). For the fine mesh the grid spacing in the uniform-grid box surrounding the body is

h = 0.008L. Fig. 18 compares the coarse and fine mesh flowfields at the same instant in the period in terms

of instantaneous streamlines and xz contours. The calculated streamline patterns on both meshes are very

similar in the vicinity of the body but significant quantitative differences are noticeable in the predicted



Fig. 17. Inviscid flow past an undulating mackerel. Instantaneous streamlines for various slip ratios. (Top) Slip = 1.1; (middle)

Slip = 1.0; (bottom) Slip = 0.6. Arrow indicates the general direction of the wake flow.
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vorticity field. On the coarse mesh the fish boundary layers are thicker, more diffuse, and produce much less
vorticity than on the fine mesh. The quantitative difference between the two predictions is particularly

evident in the immediate vicinity of the tail where much stronger vorticity is calculated on the fine mesh.

The significant quantitative differences in the resolution of the near-body boundary layer are seen to result

in quantitatively different wake structures. On the coarse mesh the wake is a classical (drag) Karman street

while on the fine mesh the undulatory body motion is able to pump fluid away from the fish and produce

thrust.

The results presented in this section demonstrate the capability of the method to capture well known

physics of fish wakes and in particular the very important dependence of the wake structure on the slip
parameter. The results also underscore the difficulties in performing simulations with a Cartesian method



Fig. 18. Viscous flow past an undulating mackerel for Re = 3000 and Slip = 0.6. Instantaneous streamlines and xz vorticity contours.

(Top) Fine mesh (210 · 120 · 120) solution showing reverse Karman street in the wake; (bottom) coarse mesh (1003). Arrow indicates

the general direction of the wake flow.
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at intermediate (or transitional) Reynolds numbers – where the term transitional refers here to the transi-

tion from the viscous to the inertial flow regimes.

4.3.2. Flow past a planktonic copepod

Planktonic micro-crustaceans, such as copepods, are among the most abundant animals in the planet.

They constitute a major source of food for fish while their feeding habits play an important role in control-

ling phytoplankton population growth. Thus, planktonic micro-crustaceans play a critical role in the bal-

ance of the oceanic ecosystem and for that reason they are being studied intensely by biologists. Much of
the recent work with copepods has focused on visualizing and quantifying the flow patterns they generate as

they move through water in order to characterize the hydrodynamic signatures they generate (Malkiel et al.

[67], Yen and Strickland [68]). This is because it has long been hypothesized that copepods are able to dis-

tinguish an attractive mate from a lunging predator by sensing their respective hydrodynamic signatures in

the form of coherent vortical structures. Due to their very small size (of the order of 1 mm), copepods typ-

ically operate in a low Reynolds number environment, with Reynolds numbers based on their length and

swimming speed ranging from order 100 to 102. Yet they can generate very complex flowfields because of

their intricate anatomy, which is dominated by multiple moving appendages (antennules, legs, tail, etc.) –
see Fig. 19. Their complex geometry makes the numerical simulation of the flows they induce particularly

challenging. To date the only attempt to simulate such flows using a quasi-steady CFD approach has been

reported by Jiang et al. [69,70] who considered a simplified copepod model and collectively accounted for

most of its multiple appendages by imposing a force field in the vicinity of the copepod body. In this sec-

tion, we report a small sample of results from the first attempt to simulate copepod flows from first prin-

ciples. That is, by modeling individual appendages, prescribing their kinematics from biological

observations, and simulating the complex flowfield the combined motion of these appendages generate.



Fig. 19. Viscous flow past a planktonic copepod. Three-dimensional views of the unstructured surface mesh along with definitions of

the various angles used to define the kinematics of the prescribed motion. Appendages that move are the long, horizontally oriented

antennules at the front of the body (see middle figure), the four pairs of legs (see bottom side view) and the tail (see bottom figure). The

lines indicate the envelope of motion for each appendage.
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The copepod model we simulate is shown in Fig. 19, which depicts various three-dimensional views of

the unstructured surface mesh. The model includes the two long antennules (the defining feature of the

copepod anatomy), the two front maxillae, the four pairs of legs and the tail (uresome) and has been con-

structed using input from biological observations and high-resolution digital photography [71]. We carry

out viscous flow calculations for a set of kinematics, which corresponds to what biologist refer to as an es-

cape maneuver typically performed when a copepod is attempting to escape a predator. During this maneu-

ver the animal attempts to maximize hydrodynamic thrust and deploys sequentially all of its major

appendages, first the two antennules, followed by the uresome, and then the legs, with the rear pair being
deployed first. Maximum angular amplitudes of antennules hant0 = 75�, of tail htail0 = 80�, and of all pairs of

legs hleg0 = 90� are shown in Fig. 19. Fig. 20 shows the kinematics of the appendages as prescribed in our



Fig. 20. Viscous flow past a planktonic copepod. Prescribed kinematics for the antennules, legs, and tail. The leg pairs are marked as

12, 34, 56, and 78 from the front to the rear of the animal, respectively. For definitions of the various angles see Fig. 20.
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numerical simulation in terms of the temporal evolution of the various angles of rotation hant, htail, hleg12
(front legs), hleg34, hleg56, hleg78 (rear legs). The details of the kinematics is based on biological observations

of live animals [71].

The surface mesh was discretized with 11432 triangles and simulations were carried out in a Cartesian

grid with 1003 nodes. The computational domain a 6L · 6L · 4L box with the body placed exactly at its

center (where L is the streamwise length of the body). Uniform grid spacing with h = 0.05L is used within
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a region 2L · 2L · 1L centered around the body. The fluid in the computational domain is initially stagnant

and the copepod begins to deploy its appendages impulsively at t = 0. The copepod is not allowed to move

and, thus, the simulation corresponds to the motion of a tethered animal, as frequently done in laboratory

experiments. Non-reflective boundary conditions were prescribed at all boundaries of the computational

domain. Fig. 21 shows instantaneous streamlines and pressure contours at the vertical plane of symmetry
of the animal at various instants in time. For reference, the body shape with the current location of the

various appendages is also included in the figure. Even for this very complex body shape and motion,

the numerical method had no difficulty obtaining converged solutions at each time step for several simu-

lated periods of motion.
Fig. 21. Viscous flow past a planktonic copepod. Instantaneous streamlines and pressure contours at the vertical plane of symmetry of

the copepod. The various instants in time, t1 to t6, are marked in Fig. 20. For reference, the instantaneous location of the animal

appendages is also shown in each figure.
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The periodic deployment of the various appendages in the manner described in Fig. 20 results in a very

complex, albeit periodic flowfield as indicated in the sequence of images shown in Fig. 21. At the start of the

period (Fig. 21(t1)), the flow pattern around the body is dominated by the clockwise eddy at the upper half

of the flow, which was created at the end of the period – compared Fig. 21(t1) and (t6). This eddy causes the

flow in the vicinity of the body to be directed upstream and generates a drag force. As the antennules begin
to push fluid backward, like two long paddles, a counter-clockwise, start-up eddy is generated near the

body, which pushes the clockwise eddy away and begins to generate a pocket of downstream-directed thrust

flow at the front of the animal (see Fig. 21(t2)). The thrust-jet is further enhanced as the tail and legs are

deployed (see Fig. 21(t3) and (t4)). As the various appendages begin to return to their initial positions, how-

ever, the thrust flow is pushed away from the body by a clockwise rotating eddy in the front part of the

body, which reverses the thrust jet into a drag flow. The formation of the clockwise eddy has been com-

pleted at the end of the period when all appendages have returned to their initial positions (Fig. 21(t6)).

Note that the results shown in this figure suggest that while escaping the copepod produces bursts of thrust
with each upstroke, which would propel the animal forward and possibly allow it to coast because of its

inertia during the drag-inducing downstroke. Detailed simulations of copepod flows aimed at quantifying

the effect of body kinematics and Reynolds numbers on the flow patterns and locomotive forces are cur-

rently under way and the results will be reported in a future communication.
5. Summary and conclusion

We have developed a novel hybrid Cartesian/immersed boundary method for simulating three-dimen-

sional flows in domains with arbitrarily complex, flexible immersed boundaries moving with prescribed mo-

tion. The immersed boundary is treated as a sharp interface and the solution in its vicinity is reconstructed

using interpolation along the local normal to the body. To facilitate the calculation of the normal, we dis-

cretize the body with an unstructured, triangular grid. The use of unstructured grid greatly enhances the

generality of the method as it allows the modeling of arbitrarily complex, three-dimensional immersed

boundaries and eliminates ambiguities encountered when the reconstruction is carried out by interpolating

along grid lines. We also developed a hybrid staggered/non-staggered discretization approach for discret-
izing the governing equations. The hybrid approach retains all desirable features of the pure staggered grid

arrangement but greatly simplifies the discretization of the equations and the implementation of boundary

conditions near flexible immersed boundaries.

A grid convergence study was carried out, which showed that the method is second-order accurate. Val-

idation studies were also reported for flow induced by a sphere rotating steadily in a fluid that is at rest

sufficiently far from the sphere as well as for flow induced by a three-dimensional flapping wing in a con-

fined domain. For both cases good agreement with benchmark solutions and laboratory measurements was

obtained.
To demonstrate the applicability of the method to unsteady flows with flexible, three-dimensional im-

mersed boundaries, we simulated flow past an undulating fish-like body and flow past a reasonably realistic

model of a planktonic copepod. For the fish problem, our simulations captured the well known dependence

of the wake structure on the slip velocity, yielding wakes with reverse Karman street for slip ratios less than

unity. The copepod simulations demonstrated the ability of the method to simulate flow induced by bodies

with multiple moving appendages. To the best of our knowledge this is the first time that a sharp-interface

method has been successfully applied to simulate flows past 3D moving bodies of such geometrical intri-

cacy. Therefore, our work underscores the promise of our method as a powerful numerical simulation tool
for a broad range of biofluids applications

So far we have applied the method to flows in the low to moderate Reynolds number regime. Extension

to higher Reynolds numbers hinges on the main limitation of all methods of this type, namely the need for
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very fine grid resolutions in the vicinity of the immersed boundary. This difficulty can be addressed by com-

bining the present method with local grid embedding and adaptive grid refinement techniques (see, for

example, the recent work by [18,72,73]). Our interface tracking and solution reconstruction techniques

are, at least in principle, applicable in conjunction with such resolution enhancing strategies but this impor-

tant issue will be left as topic for future research.
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